Install packages
if(!require("htmltools")) install.packages("htmltools")
if(!require("remotes")) install.packages("remotes")
if(!require("MultiEWCE")) remotes::install_github("neurogenomics/MutltiEWCE", dependencies = TRUE)
Prioritise targets
Filter & sort
<- MultiEWCE::prioritise_targets() res
## Prioritising gene targets.
## Adding HPO IDs.
## Importing existing file: ... phenotype_to_genes.txt
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
## Adding term definitions.
## Adding level-3 ancestor to each HPO ID.
## Prioritised targets: step='start'
## - rows: 475,321
## - phenotypes: 6,173
## - celltypes: 77
## Filtering @ q-value <= 0.05
## Prioritised targets: step='q_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Filtering @ fold-change >= 1
## Prioritised targets: step='fold_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Getting absolute ontology level for 2,831 HPO IDs.
## Prioritised targets: step='keep_ont_levels'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Annotating phenos with Onset.
## Importing existing file: ... phenotype.hpoa
## Translating all phenotypes to names.
## + Returning a vector of phenotypes (same order as input).
## Importing existing file: ... phenotype.hpoa
## Prioritised targets: step='keep_onsets'
## - rows: 8,209
## - phenotypes: 2,770
## - celltypes: 77
## Annotating phenos with Tiers.
## Prioritised targets: step='keep_tiers'
## - rows: 805
## - phenotypes: 171
## - celltypes: 60
## Annotating phenos with Modifiers
## Prioritised targets: step='severity_threshold'
## - rows: 762
## - phenotypes: 167
## - diseases: 19
## - celltypes: 60
## Annotating phenotype frequencies.
## Prioritised targets: step='pheno_frequency_threshold'
## - rows: 652
## - phenotypes: 132
## - diseases: 18
## - celltypes: 58
## 31 / 58 of cell types kept.
## Prioritised targets: step='keep_celltypes'
## - rows: 395
## - phenotypes: 108
## - diseases: 18
## - celltypes: 31
## Filtering by gene size.
## Converting phenos to GRanges.
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
## Loading required namespace: ensembldb
## Gathering gene metadata
## Loading required namespace: EnsDb.Hsapiens.v75
## Prioritised targets: step='keep_seqnames'
## - rows: 62,127
## - phenotypes: 108
## - genes: 3,711
## 235 / 3,711 genes kept.
## Prioritised targets: step='gene_size'
## - rows: 3,337
## - phenotypes: 104
## - genes: 235
## Prioritised targets: step='keep_biotypes'
## - rows: 3,337
## - phenotypes: 104
## - genes: 235
## Filtering by specificity_quantile.
## Filtering by mean_exp_quantile.
## Annotating gene frequencies.
## Importing existing file: ... genes_to_phenotype.txt
## Prioritised targets: step='gene_frequency_threshold'
## - rows: 11,880
## - phenotypes: 104
## - diseases: 17
## - celltypes: 31
## - genes: 234
## Prioritised targets: step='keep_specificity_quantiles'
## - rows: 349
## - phenotypes: 78
## - diseases: 15
## - celltypes: 26
## - genes: 69
## Prioritised targets: step='keep_mean_exp_quantiles'
## - rows: 349
## - phenotypes: 78
## - diseases: 15
## - celltypes: 26
## - genes: 69
## Sorting rows.
## Finding top 20 gene targets per: HPO_ID, CellType
## Prioritised targets: step='top_n'
## - rows: 349
## - phenotypes: 78
## - diseases: 15
## - celltypes: 26
## - genes: 69
## Prioritised targets: step='end'
## - rows: 349
## - phenotypes: 78
## - diseases: 15
## - celltypes: 26
## - genes: 69
Top targets
Here are the top gene targets based on the default filtering/sorting
criterion of prioritise_targets
.
::create_dt(res$top_targets) MultiEWCE
## Loading required namespace: DT
Filtering report
Here is a report that shows how many phenotypes/celltypes/genes
remained after each step within the prioritise_targets
pipeline.
::create_dt(res$report) MultiEWCE
Plot network
Generate a network from the top phenotype-celltype-gene associations.
<- MultiEWCE::prioritise_targets_network(
vn_top top_targets = res$top_targets,
mediator_var = list(),
save_path = here::here("reports","top_targets_network.html"),
show_plot = FALSE)
## Loading required namespace: igraph
## Creating network.
## Loading required namespace: visNetwork
## Creating plot.
## Saving plot ==> /Users/schilder/Desktop/ewce/RareDiseasePrioritisation/reports/top_targets_network.html
# visNetwork::visExport(vn_top$plot, type = "pdf", loadDependencies = T)
# visNetwork::renderVisNetwork(vn_top$plot)
# pagedown::chrome_print(input = here::here("reports","top_targets_network.html"),
# output = here::here("reports","top_targets_network.pdf"),
# format = "pdf")
# webshot::webshot(here::here("reports","top_targets_network.html"),
# zoom = 1,
# vwidth = 2000,
# vheight = 1000,
# file = path.expand("~/Downloads/ex.pdf"))
::includeHTML("https://github.com/neurogenomics/RareDiseasePrioritisation/raw/master/reports/top_targets_network.html") htmltools
Aggregate results
<- MultiEWCE::agg_results(
df_agg phenos = res$top_targets,
count_var = "CellType",
group_var = c("Phenotype","ontLvl",
"tier","tier_auto",
"ancestor","ancestor_name",
"disease_characteristic","DiseaseNames",
"Onset","Onset_earliest","Onset_score_mean","Onset_score_min",
"pheno_freq_mean","pheno_freq_min",
"Severity_score_mean","Severity_score_min")
)
## Aggregating results by group_var='Phenotype'Aggregating results by group_var='ontLvl'Aggregating results by group_var='tier'Aggregating results by group_var='tier_auto'Aggregating results by group_var='ancestor'Aggregating results by group_var='ancestor_name'Aggregating results by group_var='disease_characteristic'Aggregating results by group_var='DiseaseNames'Aggregating results by group_var='Onset'Aggregating results by group_var='Onset_earliest'Aggregating results by group_var='Onset_score_mean'Aggregating results by group_var='Onset_score_min'Aggregating results by group_var='pheno_freq_mean'Aggregating results by group_var='pheno_freq_min'Aggregating results by group_var='Severity_score_mean'Aggregating results by group_var='Severity_score_min'
## Adding HPO IDs.
## Importing existing file: ... phenotype_to_genes.txt
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
::create_dt(df_agg) MultiEWCE
Aggregate results
Subset phenotypes to those included in intellectual disability, and are related to cognition.
<- HPOExplorer::add_ancestor(
df_intel phenos = res$top_targets[ancestor_name=="Abnormality of the nervous system",][,-c("ancestor","ancestor_name")],
lvl = 5)
## Adding level-5 ancestor to each HPO ID.
<- df_intel[
df_intel %in% c("Neurodevelopmental abnormality"),]
ancestor_name sort(unique(df_intel$Phenotype))
## [1] "Developmental regression" "Global developmental delay"
## [3] "Mild global developmental delay" "Neurodevelopmental abnormality"
## [5] "Neurodevelopmental delay" "Severe global developmental delay"
Top genes
<- sort(table(df_intel$Gene),
top_genes decreasing = TRUE)
print(top_genes)
##
## SOX3 SOX2 GSX2 POU3F4 TUBB2A FOXG1 HOXA2
## 11 8 6 6 6 4 4
## RTL1 SIX6 GPR88 PIGY PROP1 SLC18A3 SNORD116-1
## 4 4 3 3 3 3 3
## SNORD118 ASCL1 FOXH1 HES7 MAB21L2 HPDL JAG1
## 3 2 2 2 2 1 1
## KLRC4 PRRT2 RNU12 TRH
## 1 1 1 1
Top cell types
<- sort(table(unique(df_intel[,c("Phenotype","HPO_ID","CellType")])$CellType),
top_celltypes decreasing = TRUE)
print(top_celltypes)
##
## Excitatory neurons Ganglion cells Astrocytes ENS glia
## 4 4 3 3
## Granule neurons Horizontal cells Inhibitory neurons Oligodendrocytes
## 3 3 3 3
## Purkinje neurons Amacrine cells Schwann cells Visceral neurons
## 3 2 2 2
## ENS neurons
## 1
Prioritise targets: extended
Now let’s lift some of the filters on phenotypes and cell types to recover a more extensive network.
Filter & sort
<- MultiEWCE::prioritise_targets(keep_onsets = NULL,
res_all keep_tiers = NULL,
severity_threshold = NULL,
pheno_frequency_threshold = c(10,NA),
gene_frequency_threshold = c(10,NA),
keep_specificity_quantiles = seq(30,40),
keep_mean_exp_quantiles = seq(30,40))
## Prioritising gene targets.
## Adding HPO IDs.
## Importing existing file: ... phenotype_to_genes.txt
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
## Adding term definitions.
## Adding level-3 ancestor to each HPO ID.
## Prioritised targets: step='start'
## - rows: 475,321
## - phenotypes: 6,173
## - celltypes: 77
## Filtering @ q-value <= 0.05
## Prioritised targets: step='q_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Filtering @ fold-change >= 1
## Prioritised targets: step='fold_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Getting absolute ontology level for 2,831 HPO IDs.
## Prioritised targets: step='keep_ont_levels'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Annotating phenos with Onset.
## Importing existing file: ... phenotype.hpoa
## Translating all phenotypes to names.
## + Returning a vector of phenotypes (same order as input).
## Prioritised targets: step='keep_onsets'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Annotating phenos with Tiers.
## Prioritised targets: step='keep_tiers'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Annotating phenos with Modifiers
## Prioritised targets: step='severity_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - diseases: 290
## - celltypes: 77
## Annotating phenotype frequencies.
## Prioritised targets: step='pheno_frequency_threshold'
## - rows: 8,260
## - phenotypes: 2,785
## - diseases: 290
## - celltypes: 76
## 37 / 76 of cell types kept.
## Prioritised targets: step='keep_celltypes'
## - rows: 4,201
## - phenotypes: 1,879
## - diseases: 226
## - celltypes: 37
## Filtering by gene size.
## Converting phenos to GRanges.
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
## Gathering gene metadata
## Prioritised targets: step='keep_seqnames'
## - rows: 706,375
## - phenotypes: 1,879
## - genes: 4,329
## 289 / 4,329 genes kept.
## Prioritised targets: step='gene_size'
## - rows: 40,891
## - phenotypes: 1,611
## - genes: 289
## Prioritised targets: step='keep_biotypes'
## - rows: 40,891
## - phenotypes: 1,611
## - genes: 289
## Filtering by specificity_quantile.
## Filtering by mean_exp_quantile.
## Annotating gene frequencies.
## Importing existing file: ... genes_to_phenotype.txt
## Prioritised targets: step='gene_frequency_threshold'
## - rows: 120,541
## - phenotypes: 1,579
## - diseases: 216
## - celltypes: 37
## - genes: 289
## Prioritised targets: step='keep_specificity_quantiles'
## - rows: 17,329
## - phenotypes: 1,307
## - diseases: 192
## - celltypes: 37
## - genes: 246
## Prioritised targets: step='keep_mean_exp_quantiles'
## - rows: 17,329
## - phenotypes: 1,307
## - diseases: 192
## - celltypes: 37
## - genes: 246
## Sorting rows.
## Finding top 20 gene targets per: HPO_ID, CellType
## Prioritised targets: step='top_n'
## - rows: 16,268
## - phenotypes: 1,307
## - diseases: 192
## - celltypes: 37
## - genes: 246
## Prioritised targets: step='end'
## - rows: 16,268
## - phenotypes: 1,307
## - diseases: 192
## - celltypes: 37
## - genes: 246
Plot network
<- MultiEWCE::prioritise_targets_network(top_targets = res_all$top_targets,
vn_all save_path = here::here("reports",
"all_targets_network.html"),
mediator_var = list(),
show_plot = FALSE)
## Creating network.
## Creating plot.
## Saving plot ==> /Users/schilder/Desktop/ewce/RareDiseasePrioritisation/reports/all_targets_network.html
::includeHTML("https://github.com/neurogenomics/RareDiseasePrioritisation/raw/master/reports/all_targets_network.html") htmltools
Aggregate results
<- MultiEWCE::agg_results(phenos = res_all$top_targets,
all_agg count_var = "CellType",
group_var = "Phenotype")
## Aggregating results by group_var='Phenotype'
## Adding HPO IDs.
## Importing existing file: ... phenotype_to_genes.txt
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
::create_dt(all_agg) MultiEWCE
Top phenotypes
Get the phenotypes that were enriched in the greatest number of cell types.
#### All ontology level ####
head(sort(table(unique(res_all$top_targets[,c("Phenotype","CellType")])$Phenotype),
decreasing = TRUE))
##
## Abnormality of eye movement Intellectual disability
## 16 16
## Abnormal muscle physiology Abnormal muscle tone
## 15 15
## Abnormal nervous system physiology Abnormality of the musculature
## 15 15
#### Only lower ontology levels #####
<- HPOExplorer::add_ont_lvl(res_all$top_targets)
all_targets head(sort(table(unique(res_all$top_targets[ontLvl<=4,c("Phenotype","CellType")])$Phenotype),
decreasing = TRUE))
##
## Intellectual disability Hypotonia
## 16 15
## Neurodevelopmental abnormality Abnormal involuntary eye movements
## 15 14
## Neurological speech impairment Nystagmus
## 14 14
Top cell types
Get the cell types that were enriched in the greatest number of unique phenotypes.
head(sort(table(unique(res_all$top_targets[,c("Phenotype","CellType")])$CellType),
decreasing = TRUE))
##
## Excitatory neurons Antigen presenting cells Cardiomyocytes
## 236 214 183
## Limbic system neurons ENS glia Ganglion cells
## 173 167 163
Top genes
Get the genes that were enriched in the greatest number of unique phenotypes.
head(sort(table(unique(res_all$top_targets[,c("Phenotype","Gene")])$Gene),
decreasing = TRUE))
##
## RMRP RNU4ATAC FOXG1 TMEM107 KCNJ11 FOXH1
## 201 190 156 156 154 153
Top ancestors
Get the most common ancestors in the results.
<- sort(table(res_all$top_targets$ancestor), decreasing = TRUE) |>
ancestor_freq ::data.table() |>
data.table`colnames<-`(c("HPO_ID","freq"))
$Phenotype <- HPOExplorer::harmonise_phenotypes(phenotypes = ancestor_freq$HPO_ID) ancestor_freq
## Translating all phenotypes to names.
## + Returning a vector of phenotypes (same order as input).
::create_dt(ancestor_freq) MultiEWCE
Manual queries
Get all results.
<- MultiEWCE::prioritise_targets(keep_onsets = NULL,
res_all keep_tiers = NULL,
severity_threshold = NULL,
pheno_frequency_threshold = NULL,
gene_frequency_threshold = NULL,
keep_specificity_quantiles = NULL,
keep_mean_exp_quantiles = NULL)
## Prioritising gene targets.
## Adding HPO IDs.
## Importing existing file: ... phenotype_to_genes.txt
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
## Adding term definitions.
## Adding level-3 ancestor to each HPO ID.
## Prioritised targets: step='start'
## - rows: 475,321
## - phenotypes: 6,173
## - celltypes: 77
## Filtering @ q-value <= 0.05
## Prioritised targets: step='q_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Filtering @ fold-change >= 1
## Prioritised targets: step='fold_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Getting absolute ontology level for 2,831 HPO IDs.
## Prioritised targets: step='keep_ont_levels'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Annotating phenos with Onset.
## Importing existing file: ... phenotype.hpoa
## Translating all phenotypes to names.
## + Returning a vector of phenotypes (same order as input).
## Prioritised targets: step='keep_onsets'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Annotating phenos with Tiers.
## Prioritised targets: step='keep_tiers'
## - rows: 8,379
## - phenotypes: 2,832
## - celltypes: 77
## Annotating phenos with Modifiers
## Prioritised targets: step='severity_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - diseases: 290
## - celltypes: 77
## Annotating phenotype frequencies.
## Prioritised targets: step='pheno_frequency_threshold'
## - rows: 8,379
## - phenotypes: 2,832
## - diseases: 290
## - celltypes: 77
## 37 / 77 of cell types kept.
## Prioritised targets: step='keep_celltypes'
## - rows: 4,255
## - phenotypes: 1,909
## - diseases: 226
## - celltypes: 37
## Filtering by gene size.
## Converting phenos to GRanges.
## Translating all phenotypes to HPO IDs.
## + Returning a vector of phenotypes (same order as input).
## Gathering gene metadata
## Prioritised targets: step='keep_seqnames'
## - rows: 725,711
## - phenotypes: 1,909
## - genes: 4,329
## 289 / 4,329 genes kept.
## Prioritised targets: step='gene_size'
## - rows: 42,039
## - phenotypes: 1,635
## - genes: 289
## Prioritised targets: step='keep_biotypes'
## - rows: 42,039
## - phenotypes: 1,635
## - genes: 289
## Annotating gene frequencies.
## Importing existing file: ... genes_to_phenotype.txt
## Prioritised targets: step='gene_frequency_threshold'
## - rows: 127,223
## - phenotypes: 1,635
## - diseases: 217
## - celltypes: 37
## - genes: 289
## Prioritised targets: step='keep_specificity_quantiles'
## - rows: 127,223
## - phenotypes: 1,635
## - diseases: 217
## - celltypes: 37
## - genes: 289
## Prioritised targets: step='keep_mean_exp_quantiles'
## - rows: 127,223
## - phenotypes: 1,635
## - diseases: 217
## - celltypes: 37
## - genes: 289
## Sorting rows.
## Finding top 20 gene targets per: HPO_ID, CellType
## Prioritised targets: step='top_n'
## - rows: 50,430
## - phenotypes: 1,635
## - diseases: 217
## - celltypes: 37
## - genes: 285
## Prioritised targets: step='end'
## - rows: 50,430
## - phenotypes: 1,635
## - diseases: 217
## - celltypes: 37
## - genes: 285
Mental deterioration
Definition of “Mental deterioration” from the HPO: > Loss of previously present mental abilities, generally in adults. > Synonyms: Cognitive decline, Cognitive decline, progressive, Intellectual deterioration, Mental deterioration, Progressive cognitive decline
Not included in prioritise_targets
outputs by default
because: - “specificity_quantile” (median=6) and “mean_exp_quantile”
(median=6) are quite low for most genes associated with “Mental
deterioration”
<- res_all$top_targets[Phenotype=="Mental deterioration" & q<=0.05]
md_targets
sort(table(md_targets[CellType %in% c("Amacrine cells","Ganglion cells")]$Gene),
decreasing = TRUE)
##
## SNORD118 APOE CHCHD10 CSTB FTL GLUD2 HSD17B10 HTRA2
## 4 2 2 2 2 2 2 2
## KCNJ11 NDUFAF3 NHLRC1 SCO2 SDHAF1 TIMM8A TINF2 TREX1
## 2 2 2 2 2 2 2 2
## TYROBP UBQLN2
## 2 2
Recurrent Neisserial infections
<- MultiEWCE::load_example_results()
results <-results[Phenotype=="Recurrent Neisserial infections" & q<=0.05]
rci_targets <- HPOExplorer::load_phenotype_to_genes() p2g
## Importing existing file: ... phenotype_to_genes.txt
::setnames(p2g,"ID","HPO_ID")
data.table
<- data.table::merge.data.table(rci_targets,
rci_targets c("HPO_ID","Gene")],
p2g[,by="HPO_ID")
::create_dt(rci_targets) MultiEWCE
<- MultiEWCE::agg_results(rci_targets) rci_agg
## Aggregating results by group_var='CellType'
::create_dt(rci_agg) MultiEWCE
Session info
::sessionInfo() utils
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] MultiEWCE_0.1.3 remotes_2.4.2 htmltools_0.5.4
##
## loaded via a namespace (and not attached):
## [1] utf8_1.2.3 R.utils_2.12.2
## [3] tidyselect_1.2.0 RSQLite_2.2.20
## [5] AnnotationDbi_1.60.0 htmlwidgets_1.6.1
## [7] grid_4.2.1 BiocParallel_1.32.5
## [9] munsell_0.5.0 codetools_0.2-19
## [11] DT_0.27 colorspace_2.1-0
## [13] Biobase_2.58.0 filelock_1.0.2
## [15] knitr_1.42 rstudioapi_0.14
## [17] orthogene_1.4.1 stats4_4.2.1
## [19] SingleCellExperiment_1.20.0 ggsignif_0.6.4
## [21] MatrixGenerics_1.10.0 GenomeInfoDbData_1.2.9
## [23] bit64_4.0.5 rprojroot_2.0.3
## [25] coda_0.19-4 vctrs_0.5.2
## [27] treeio_1.22.0 generics_0.1.3
## [29] xfun_0.37 BiocFileCache_2.6.0
## [31] R6_2.5.1 GenomeInfoDb_1.34.9
## [33] pals_1.7 AnnotationFilter_1.22.0
## [35] bitops_1.0-7 cachem_1.0.6
## [37] gridGraphics_0.5-1 DelayedArray_0.24.0
## [39] assertthat_0.2.1 promises_1.2.0.1
## [41] BiocIO_1.8.0 scales_1.2.1
## [43] gtable_0.3.1 ontologyPlot_1.6
## [45] ensembldb_2.22.0 rlang_1.0.6
## [47] rtracklayer_1.58.0 rstatix_0.7.2
## [49] lazyeval_0.2.2 dichromat_2.0-0.1
## [51] broom_1.0.3 BiocManager_1.30.19
## [53] yaml_2.3.7 reshape2_1.4.4
## [55] HPOExplorer_0.99.4 abind_1.4-5
## [57] GenomicFeatures_1.50.4 ggnetwork_0.5.10
## [59] crosstalk_1.2.0 backports_1.4.1
## [61] httpuv_1.6.8 tools_4.2.1
## [63] ggplotify_0.1.0 statnet.common_4.8.0
## [65] ggplot2_3.4.0 ellipsis_0.3.2
## [67] jquerylib_0.1.4 paintmap_1.0
## [69] BiocGenerics_0.44.0 Rcpp_1.0.10
## [71] plyr_1.8.8 visNetwork_2.1.2
## [73] progress_1.2.2 zlibbioc_1.44.0
## [75] purrr_1.0.1 RCurl_1.98-1.10
## [77] prettyunits_1.1.1 ggpubr_0.5.0
## [79] S4Vectors_0.36.1 SummarizedExperiment_1.28.0
## [81] grr_0.9.5 here_1.0.1
## [83] magrittr_2.0.3 data.table_1.14.6
## [85] ProtGenerics_1.30.0 matrixStats_0.63.0
## [87] hms_1.1.2 patchwork_1.1.2
## [89] mime_0.12 evaluate_0.20
## [91] xtable_1.8-4 XML_3.99-0.13
## [93] EWCE_1.6.0 IRanges_2.32.0
## [95] compiler_4.2.1 biomaRt_2.54.0
## [97] tibble_3.1.8 maps_3.4.1
## [99] crayon_1.5.2 R.oo_1.25.0
## [101] ggfun_0.0.9 later_1.3.0
## [103] tidyr_1.3.0 aplot_0.1.9
## [105] DBI_1.1.3 ExperimentHub_2.6.0
## [107] gprofiler2_0.2.1 dbplyr_2.3.0
## [109] rappdirs_0.3.3 babelgene_22.9
## [111] EnsDb.Hsapiens.v75_2.99.0 Matrix_1.5-3
## [113] car_3.1-1 piggyback_0.1.4
## [115] cli_3.6.0 R.methodsS3_1.8.2
## [117] parallel_4.2.1 igraph_1.3.5
## [119] GenomicRanges_1.50.2 pkgconfig_2.0.3
## [121] prettydoc_0.4.1 GenomicAlignments_1.34.0
## [123] plotly_4.10.1 xml2_1.3.3
## [125] ggtree_3.6.2 bslib_0.4.2
## [127] XVector_0.38.0 yulab.utils_0.0.6
## [129] stringr_1.5.0 digest_0.6.31
## [131] graph_1.76.0 Biostrings_2.66.0
## [133] rmarkdown_2.20 HGNChelper_0.8.1
## [135] tidytree_0.4.2 restfulr_0.0.15
## [137] curl_5.0.0 shiny_1.7.4
## [139] Rsamtools_2.14.0 rjson_0.2.21
## [141] lifecycle_1.0.3 nlme_3.1-162
## [143] jsonlite_1.8.4 carData_3.0-5
## [145] network_1.18.1 mapproj_1.2.11
## [147] viridisLite_0.4.1 limma_3.54.1
## [149] fansi_1.0.4 pillar_1.8.1
## [151] ontologyIndex_2.10 lattice_0.20-45
## [153] homologene_1.4.68.19.3.27 KEGGREST_1.38.0
## [155] fastmap_1.1.0 httr_1.4.4
## [157] interactiveDisplayBase_1.36.0 glue_1.6.2
## [159] RNOmni_1.0.1 png_0.1-8
## [161] ewceData_1.6.0 BiocVersion_3.16.0
## [163] bit_4.0.5 Rgraphviz_2.42.0
## [165] stringi_1.7.12 sass_0.4.5
## [167] blob_1.2.3 AnnotationHub_3.6.0
## [169] memoise_2.0.1 dplyr_1.1.0
## [171] ape_5.6-2