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There are thousands of human phenotypes which are linked to genetic variation.8

These range from the benign (white eyelashes) to the deadly (respiratory failure).9

The Human Phenotype Ontology has categorised all human phenotypic variation10

into an unified framework that defines the relationships between them (e.g. missing11

arms and missing legs are both abnormalities of the limb). This has made it possible12

to perform phenome-wide analyses, e.g. to prioritise which make the best candi-13

dates for gene therapies. However, there is currently limited metadata describing14

the clinical characteristics / severity of these phenotypes. With >17500 phenotypic15

abnormalities across >8600 rare diseases, manual curation of such phenotypic an-16

notations by experts would be exceedingly labour-intensive and time-consuming.17

Leveraging advances in artificial intelligence, we employed the OpenAI GPT-4 large18

language model (LLM) to systematically annotate the severity of all phenotypic19

abnormalities in the HPO. Phenotypic severity was defined using a set of clinical20

characteristics and their frequency of occurrence. First, we benchmarked the gen-21

erative LLM clinical characteristic annotations against ground-truth labels within22

the HPO (e.g. phenotypes in the ‘Cancer’ HPO branch were annotating as causing23

cancer by GPT-4). True positive recall rates across different clinical characteristics24

ranged from 89-100% (mean=96%), clearly demonstrating the ability of GPT-4 to25

automate the curation process with a high degree of fidelity. Using a novel approach,26

we developed a severity scoring system that incorporates both the nature of the27

clinical characteristic and the frequency of its occurrence. These clinical character-28

istic severity metrics will enable efforts to systematically prioritise which human29

phenotypes are most detrimental to human health, and best targets for therapeutic30

intervention.31

0.2 Introduction32

Ontologies provide a common language with which to communicate concepts. In33

medicine, ontologies for phenotypic abnormalities are invaluable for defining, diag-34

nosing, prognosing, and treating human disease. Since 2008, the Human Phenotype35

Ontology (HPO) has been instrumental in healthcare and biomedical research by36

providing a framework for comprehensively describing human phenotypes and the37

relationships between them (Gargano et al., 2024; Köhler et al., 2021). By expand-38

ing its depth and breadth over time, the HPO now contains >17500 phenotypic39

abnormalities across >8600 diseases. Some HPO phenotypes also contain metadata40

annotations such typical age of onset, frequency, triggers, time course, mortality41

rate and typical severity. Describing the severity-related attributes of a disease is42

crucial for both research and clinical care of individuals with rare diseases. When43

researchers or clinicians are presented with phenotypes that fall outside of their44

expertise, resources to quickly and reliably retrieve summaries with additional rel-45
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evant information about these phenotypes are essential. In the clinic, this can help46

in reaching a differential diagnosis or prioritising the treatment of some phenotypes47

over others. In research, this information is useful for prioritising targets for causal48

disease mechanisms, performing large-scale analyses of phenotypic data, and guid-49

ing funding agencies when assessing the potential impact and need for research in50

a given disease area. To date, the HPO has largely relied on manual curation by51

domain experts. While this approach can improve annotation quality and accuracy,52

it is both time-consuming and labour-intensive. As a result, less than 1% of terms53

within the HPO contain metadata such as time course and severity.54

Artificial intelligence (AI) capabilities have advanced considerably in recent years,55

presenting new opportunities to integrate natural language processing technologies56

into assisting in the curation process. Specifically, there have recently been consid-57

erable advances in large language model (LLM) and their application to biomedical58

problems, in some cases performing as well or better than human clinicians on stan-59

dardised medical exams and patient diagnosis tasks (Bolton et al., 2024; Cheng et60

al., 2023; Gu et al., 2021; Labrak et al., 2024; Luo et al., 2022; McDuff et al., 2023;61

O’Neil et al., 2024; Shin et al., 2020; Singhal, Azizi, et al., 2023, 2023; Singhal, Tu,62

et al., 2023; Van Veen et al., 2024; Zhang et al., 2023). Recent work has demon-63

strated that the Generative Pre-trained Transformer 4 (GPT-4) foundation model64

(OpenAI et al., 2024), when combined with strategic prompt engineering, can outper-65

form even specialist LLMs that are explicitly fine-tuned for biomedical tasks (Nori et66

al., 2023). In a landmark achievement, GPT-4 was the first LLM to surpass a score67

of 90% in the United States Medical Licensing Examination (USML) (Nori et al.,68

2023).69

Here, we have used GPT-4 to systematically annotate the severity of 17502 / 1754870

(99.7%) phenotypic abnormalities within the HPO. Our severity annotation frame-71

work was adapted from previously defined criteria developed through consultation72

with clinicians (Lazarin et al., 2014). The authors consulted 192 healthcare profes-73

sionals for their opinions on the relative severity of various clinical characteristics:74

they used this to create a system for categorising the severity of diseases. Briefly,75

each healthcare professional was sent a survey asking them to first rate how impor-76

tant a disease characteristic was for determining disease severity, and then to rate77

the severity of a set of given disease. Using the responses, the authors were able to78

categorise clinical characteristics into 4 ‘severity tiers’. While characteristics such79

as shortened lifespan in infancy and intellectual disability were identified as highly80

severe and placed into tier 1, sensory impairment and reduced lifespan were cate-81

gorised as less severe and placed into tier 4. Standardised metrics of severity allow82

clinicians to quickly assess the urgency of treating a given phenotype, as well as83

prognosing what outcomes might be expected.84

To evaluate the consistency of responses generated by GPT-4 793 phenotypes were85

annotated multiple times. For a subset of phenotypes with known expected clini-86

cal characteristics, true positive rates were calculated to assess recall. Additionally,87

based on the clinical characteristics and their occurrence, we have quantified the88

severity of each phenotype, providing an example of how these clinical characteristic89

annotations can be used to guide prioritisation of gene therapy trials. Ultimately, we90

hope that our resource will be of utility to those working in rare diseases, as well as91

the wider healthcare community.92
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0.3 Results93

0.3.1 Annotating the HPO using GPT-494

I need to annotate phenotypes as to whether
they typically cause: intellectual disability ,

death , impaired mobility , physical
malformations , blindness , sensory

impairments , immunodeficiency , cancer ,
reduced fertility ? Do they have congenital
onset? To answer, use a severity scale of:

never , rarely , often , always . Do not consider
indirect effects. You must provide the output in

python code as a data frame called df with
columns: phenotype, intellectual_disability,

death, impaired_mobility,
physical_malformations, blindness,

sensory_impairments, immunodeficiency,
cancer, reduced_fertility, congenital_onset.

Also add a separate justification column for
each outcome, e.g. death, death_justification.

These are the phenotypes: Osteomyelitis
leading to amputation due to slow healing

fractures; Mesomelic arm shortening.
Placeholders are not acceptable.

Example GPT−4 prompt
a
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Figure 1: GPT-4 was able to annotate all human phenotypes based on whether they are
always/often/rarely/never associated with different clinical characteristics. a An example
of the prompt input given to to GPT-4. The phenotypes listed in the second to last sen-
tence (italicised) were changed to allow all HPO phenotypes to be annotated. b Stacked
bar plot showing the proportion of the occurrence of each clinical characteristic across all
annotated HPO phenotypes. The terms shown on the x-axis are the clinical characteris-
tics for which GPT-4 was asked to determine whether each phenotype caused them.

We employed the OpenAI GPT-4 model with Python to annotate 17502 terms95

within the HPO (v2024-02-08) (Gargano et al., 2024; Köhler et al., 2021). Our96

annotation framework was developed based on previously defined criteria for clas-97

sifying disease severity (Lazarin et al., 2014). We sought to evaluate the impact of98

phenotypes on factors including intellectual disability, death, impaired mobility,99

physical malformations, blindness, sensory impairments, immunodeficiency, cancer,100

reduced fertility, and congenital onset. Through prompt design we found that the101

performance of GPT-4 improved when we incorporated a scale associated with each102

clinical characteristic and required a justification for each response. For each clinical103

characteristic, we asked about the frequency of its occurrence - whether it never,104

rarely, often, or always occurred. Framing the queries in this way served two pur-105

poses. First, this helped to constrain the responses of GPT-4 to a specific range of106

values, making answers more consistent and amenable to downstream data analy-107

sis. Second, it served to overcome one of the main limitations noted by Lazarin et108

al. (2014) as they did not collect information on how the frequency of each disease109

affected their decision making when generating severity annotations.110

Clinical characteristic occurrence varied across annotation categories. >50% of phe-111

notypes never caused blindness, sensory impairments, immunodeficiency, cancer,112

reduced fertility or intellectual disability. Only a minority of phenotypes (21.7%)113

never had a congenital onset, which is expected as rare disorders tend to be early114

onset genetic conditions (Fig. 1).115
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Less than 1% of phenotypes always directly resulted in death (n=71), such as ‘Still-116

birth’, ‘Anencephaly’ and ‘Bilateral lung agenesis’. Meanwhile, 9707 phenotypes117

were annotated as often or rarely causing death. 7880 phenotypes were annotated118

as never causing death. Examples of phenotypes that never cause death included119

34 unique forms of syndactyly, a non-lethal condition that causes fused or webbed120

fingers (occurring 1 in 1,200–15,000 live births). While not life-threatening itself,121

syndactyly is a symptom of genetic disorders that can cause life-threatening car-122

diovascular and neurodevelopmental defects, such as Apert Syndrome (Garagnani123

& Smith, 2013). This example highlights the ability of GPT-4 to successfully dis-124

tinguish between phenotypes that directly cause lethality, and those that are often125

associated with diseases that cause lethality.126

0.3.2 Annotation consistency and recall127

To assess annotation consistency, we queried GPT-4 with a subset of the HPO phe-128

notypes multiple times (n=793 unique phenotypes). We employed two different129

metrics to determine the consistency rate. The first, less stringent metric, defined130

consistency as the duplicate annotations being either ‘always’ and ‘often’, or ‘never’131

and ‘rarely’. The second, more stringent metric, required exact agreement in annota-132

tion occurrences, e.g. ‘always’ and ‘always’. For the less stringent metric, duplicated133

phenotypes were annotated consistently at a rate of at least 80%, and for the more134

stringent metric, the lowest consistency rate was 57% for congenital onset. An exam-135

ple of where annotations were inconsistent was for the HPO term ‘Acute leukaemia’.136

One time, GPT-4 annotated it as often causing impaired mobility, giving the jus-137

tification that ‘weakness and fatigue from leukaemia and its treatment can impair138

mobility’. The other time, GPT-4 annotated it as rarely causing impaired mobil-139

ity, giving the justification that ‘acute leukaemia rarely impairs mobility directly’.140

Despite specifying in the prompt for GPT-4 not to take into consideration indirect141

effects, this is an example of where it failed to do so.142

We also reasoned that GPT-4 would be better able to give consistent answers for143

more specific phenotypes lower in the ontology, as they are more likely to have a144

single cause. We found that the stringent consistency rate did indeed significantly145

improve with greater HPO ontology depth (𝑋2
𝑃𝑒𝑎𝑟𝑠𝑜𝑛=22.17, ̂𝑉𝐶𝑟𝑎𝑚𝑒𝑟=0.03, p=0.05).146

See Figure 5 for a visual representation of this relationship.147
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n=793 phenotypes
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Figure 2: GPT-4 annotations are consistent and accurate across annotations. a Barplot
showing the annotation consistency within phenotypes that were annotated more than
once. In the lenient metric, annotations were collapsed into two groups (‘always’/‘often’
and ‘never’/‘rarely’). For a given clinical characteristic within a given phenotype, if an an-
notation was always within the same group it was considered consistent. In the stringent
metric, all four annotation categories were considered to be different from one another.
Thus, annotations were only defined as consistent if they were all identical. The blue
dashed line indicates the probability of two annotations being consistent by chance in the
lenient metric (~1/2). The gold dashed line is the probability of two annotations being
consistent by chance in the stringent metric (~1/4). b Bar plot of the true positive rate
for each annotation. The labels above each bar indicate the number of phenotypes tested.

In order to evaluate the validity of the annotations, we calculated a true positive148

rate. This involved identifying specific branches within the HPO that would con-149

tain phenotypes that would reliably indicate the presence of certain conditions. For150

instance, the phenotypes ‘Decreased fertility in females’ and ‘Decreased fertility in151

males’ should often or always cause reduced fertility. We observed an encouraging152

true positive rate exceeding 88% across in every clinical characteristic and achieving153

perfect recall (100%) in 4/8 characteristics.154

The lowest true positive rate was observed for physical malformations, with 88.5%155

recall across 87 HPO phenotypes. Some cases in which the GPT-4 annotations156

disagreed with the HPO ground truth included: ‘Angioma serpentinum’, ‘Nevus157

anemicus’, ‘Pulmonary arteriovenous fistulas’. In the case of ‘Angioma serpentinum’158

it provided the justification that ‘No known association with physical malformations’.159

In another instance, GPT-4 noted that ‘Nevus anemicus’ is ‘Limited to hypopig-160
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mented skin patch; no other malformations.’. This indicates that while technically161

incorrect according to our predefined benchmarks, a case could in fact be made that162

mild skin conditions do not rise to the level of physical malformations.163

This high level of recall underscores the robustness of our annotations and the relia-164

bility of the HPO framework in capturing clinically relevant phenotypic information.165

However, we acknowledge that the number of testable true positive phenotypes for166

some of these categories are low, especially ‘blindness’ for which there is only 1 phe-167

notype in the HPO (after excluding terms pertaining to colour or night blindness).168

Furthermore, some of the true positive phenotypes are lexically similar to the name169

of the clinical characteristic itself. In these cases, annotating ‘Severe intellectual170

disability’ as always causing intellectual disability is a relatively trivial task. Nev-171

ertheless, even these scenarios provide a clear and interpretable benchmark for the172

model’s performance. In addition, were numerous phenotypes with lexically non-173

obvious relationships to the clinical characteristic that were annotated correctly by174

GPT-4. For example, ‘Molar tooth sign on MRI’ (a neurodevelopmental pathol-175

ogy observed in radiological scans) was correctly annotated as causing intellectual176

disability.177

0.3.3 Quantifying phenotypic severity178

While individual annotations are informative, we wanted to be able to distil the179

severity of each phenotype into a single score. Quantifying the overall severity of180

phenotypes can have important implications for diagnosis, prognosis, and treatment.181

It may also guide the prioritisation of gene therapy trials for phenotypes with the182

most severe clinical characteristics and thus the most urgent need. Importantly, the183

values reflected the severity of each clinical characteristic based on both the type of184

characteristic itself and its frequency within a particular phenotype. For instance, a185

phenotype always causing death would have a higher multiplied value than a phe-186

notype often causing reduced fertility (see Table 2). First, we created a dictionary187

to map each clinical characteristic (e.g. blindness) and its frequency (always, often,188

rarely, never) to numeric values from 0-3. Then, the clinical characteristic values189

were multiplied by weights. Next, we computed an average score for each phenotype190

by aggregating the multiplied values across all clinical characteristics and then cal-191

culating the mean. This was then normalised by the theoretical maximum severity192

score, so that all phenotypes were on a 0-100 severity scale (where 100 is the most193

severe phenotype possible). This average normalised score represents the overall194

severity of the phenotype based on the severity of its individual clinical characteris-195

tics.196

Based on these scores we evaluated the top 50 severe phenotypes. One of the most197

severe phenotype was ‘Anencephaly’ (HP:0002323) with a composite severity score198

of 45. Anencephaly is a birth defect where the baby is born without a portion of its199

brain and skull, often these babies are stillborn. In fact, many of the most severe200

phenotypes were related to developmental brain and neural tube defects. Com-201

parison of the severity scores for each response, across the clinical characteristics202

annotated, revealed consistent trends: as the response of the clinical characteristic203

increased (from never to always), the severity score also increased (Supplementary204

Fig. 7). We also evaluated the severity score distribution by HPO branch and calcu-205

lated the mean severity score using all phenotypes within each major HPO branch206

(Fig. 6). The HPO branch with the greatest mean severity score was ‘Abnormal207

cellular phenotype’ (mean=17), followed by ‘Neoplasm’ (mean=16.7), which would208

include the highly ranked phenotypes seen in Figure 3.209
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Figure 3: Quantifying the severity of HPO phenotype annotations highlights the most
impactful conditions. Heatmap of 10 represetantive phenotypes from each severity class
(Profound, Severe, Moderate, Mild) stratified by whether the phenotypes are often/always
congenital (a-b) or rarely/never congenital (c-d). Continuous severity scores are shown as
bars (b,d) and were calculated by multiplying the numeric values assigned to each clinical
characteristic according to Table 2. The average normalised score, representing overall
phenotype severity on a 0-100 scale, was calculated by aggregating the multiplied values
and normalising by the theoretical maximum severity score. The x-axes show each of the
clinical characteristics. All data for this figure, as well as justifications for each annota-
tion, can be found in Table 3.

0.3.4 Severity classes210

While the continuous severity score is a helpful metric, there may be some use cases211

where a categorical classification of severity is more immediately useful. In work by212

Lazarin et al. (2014), the authors defined severity classed using a simple decision213

tree based on the individual severity annotations. We approximated this approach214

using our GPT-4 annotations. This categorical approach showed a strong degree of215

positive correspondence with the continuous severity score ( ̂𝜔2𝑝=0.88, p<2.2e-308).216

In other words, severity score increased with severity class level (mild < moderate217

< severe < profound) as expected. The distribution of severity classes is shown in218

Figure 9.219

0.3.5 Correlations between clinical characteristic severity metrics220

We found that some clinical characteristic severity metrics were correlated with one221

another, with a mean Pearson correlation of 0.2 across all individual metrics (see222

Figure 8). In particular, blindness and sensory impairment were highly correlated223

with one another (r=0.62, p=0). Some metrics drove the composite severity score224
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more than other, which is a reflection of both our per-metric weighting scheme, re-225

sponse type frequencies, and the correlation structure between metrics. Overall,226

impaired mobility seemed to be the strongest driver of the composite severity score227

with a Pearson correlation of 0.6001824, followed by intellectual disability (r=0.59)228

and death (r=0.56).229

0.3.6 Congenital onset by HPO branch230
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Figure 4: Distribution of congenital onset across HPO branches. The y-axis shows the
proportion of phenotypes that are always/often/rarely/never congenital. The x-axis shows
the HPO branch, orderered from highest to lowest proportion of always congenital pheno-
types.

Next, we assessed the distribution of congenital onset across HPO branches (Fig. 4).231

We found that the Abnormality of prenatal development or birth branch contained232

the greatest proportion of phenotypes that were always congenital (70.15%), fol-233

lowed by Abnormality of the musculoskeletal system (45.34%) and Growth abnor-234

mality (37.62%). This is concordant with the expectation that these phenotypes235

should largely be congenital. The HPO branches with the least commonly congenital236
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phenotypes were Constitutional symptom (0%), Abnormality of the thoracic cavity237

(0%), and Phenotypic abnormality (0%). ‘Constitutional symptom’ is a fairly broad238

term defined as ‘A symptom or manifestation indicating a systemic or general effect239

of a disease and that may affect the general well-being or status of an individual.’240

Examples include ‘Fatigue’ ‘Exercise intolerance’, ‘Hot flashes’ and ‘Sneeze’.241

0.4 Discussion242

Phenotype severity annotations have utility across a wide variety of applications in243

both the clinic and research. In clinical settings, severity annotations can be used244

to prioritise the treatment of some phenotypes over others in patients with complex245

presentations, avoid administering contraindicated drugs, and prognosing potential246

health outcomes. In research settings, severity annotations can be used to identify247

phenotypes that have a large impact on patient outcomes and yet are currently un-248

derstudied. They may also be used to help design new experiments and studies, or249

even provide new insights into the underlying aetiology of the disease by making250

expert-level summaries more immediately accessible to the wider research commu-251

nity.252

The creation and annotation of biomedical knowledge has traditionally relied on253

manual or semi-manual curation by human experts (Gargano et al., 2024; Köhler et254

al., 2021; Mungall et al., 2017; Ochoa et al., 2021; Putman et al., 2024). Performing255

such manual curation and review tasks at scale is often infeasible for human biomed-256

ical experts given limited time and resources. LLMs have the capacity to effectively257

encode, retrieve, and synthesise vast amounts of diverse information in a highly scal-258

able manner (OpenAI et al., 2024; Singhal, Azizi, et al., 2023; Van Veen et al., 2024).259

This makes them powerful tools that can be applied in a rapidly expanding variety260

of scenarios, including medical practice, research and data curation (Caufield et al.,261

2023; O’Neil et al., 2024; Pan et al., 2023; Singhal, Azizi, et al., 2023; Toro et al.,262

2023).263

Here, we introduce a novel framework to leverage the current best-in-class LLM,264

GPT-4 (OpenAI et al., 2024), to systematically annotate the severity of 17502 phe-265

notypic abnormalities within the HPO. By employing advanced AI capabilities, we266

have demonstrated the feasibility of automating this process, significantly enhancing267

efficiency without substantially compromising accuracy. Our validation approach268

yielded a high true positive rate exceeding 88% across the phenotypes tested. Fur-269

thermore, our approach can be readily adapted and scaled to accommodate the270

growing volume of phenotypic data. In total, the entire study cost $296.27 in queries271

to the OpenAI API. While we do not have a direct comparison, this likely represents272

a extremely small fraction of the total costs of such a study if performed manu-273

ally by human experts charging at an hourly rate. Even if all human annotations274

were provided on a volunteer basis, this would still require hundreds if not thou-275

sands of hours of cumulative manual human labour. Using our approach, severity276

annotations for the entire HPO can be generated automatically at a rate of ~100277

phenotypes/hour. Further optimisation of the annotation process and increased API278

rate limits could potentially accelerate this even further.279

Throughout this study, we observed that GPT-4 was capable of reliably recovering280

deep semantic relationships from the medical domain, far beyond making superficial281

inferences based on lexical similarities. An excellent example of this is the pheno-282

type ‘Molar tooth sign on MRI’ (HP:0002419; severity score=25.56), which GPT-4283

annotated as causing intellectual disability. At first glance, we ourselves assumed284

this was a false positive as the term appeared to be related to dentition. However,285

upon further inspection we realised that molar tooth sign is in fact a pattern of ab-286

normal brain morphology that happens to bear some resemblance to molar dentition287

when observed in radiological scans. This phenotype is a known sign of neurodevel-288
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opmental defects that can indeed cause severe intellectual disability (Gleeson et al.,289

2004).290

In addition to rapidly synthesising and summarising vast amounts of information,291

LLMs can also be steered to provide justifications for each particular response. This292

makes LLMs amenable to direct interrogation as a means of recovering explain-293

ability, especially when designed to retain information about previous requests294

and interactions as they use these to iteratively improve and update their predic-295

tions (Janik, 2024). This represents a categorical advance over traditional natural296

language processing models based on more shallow forms of statistical or machine297

learning (e.g. Term Frequency-Inverse Document Frequency (Jones, 1972), Word2vec298

(Mikolov et al., 2013)) which lack the ability to provide chains of causal reasoning299

to justify their predictions. This highlights the fundamental trade-off between sim-300

pler models with high explainability (the ability humans to understand the inner301

workings of the model) but low interpretability (the ability of humans to trace the302

decision process of the model, analogous to human ‘reasoning’), and deeper more303

complex models with low explainability but high interpretability (Marcinkevičs &304

Vogt, 2023).305

A key contribution of our study is the introduction of a quantitative severity scor-306

ing system that integrates both the nature of the clinical characteristic and the307

frequency of its occurrence. By encoding the concept of severity in this way, we are308

able to prioritise phenotypes based on their impact on patients. The methodology309

allowed us to transition from low-throughput qualitative assessments of severity310

(e.g. Lazarin et al. (2014)) to high-throughput quantitative assessments of severity.311

One of the most severe phenotypes in the HPO is ‘Fetal akinesia sequence’ (FAS;312

HP:0001989, severity score= 43.9), and extremely rare condition that is almost al-313

ways lethal. FAS is a complex, multi-system phenotype that can be caused by at314

least 24 different genetic disorders. Despite the complex and heterogeneous aetiol-315

ogy of this phenotype, GPT-4 was able to provide accurate annotations alongside316

explainable justifications for those annotations (see Table 4). For example, this phe-317

notype almost always results in death, either in utero or shortly after birth. Not318

only did GPT-4 correctly provide the annotation death as ‘always’, when asked319

whether FAS causes sensory impairments it provided the response ‘always’ with the320

justification ‘Fetal akinesia sequence typically results in severe sensory impairment321

due to neurodevelopmental disruption.’ Neurodevelopmental disruption is indeed a322

hallmark component of FAS (e.g. hydrocephalus, cerebellar hypoplasia) that causes323

severe impairments across multiple sensory systems (Chen, 2012). This demonstrates324

that GPT-4 was able to recover the correct chain of causality from phenotype to325

clinical characteristic.326

Our findings highlight the potential of this next generation of natural language pro-327

cessing technologies in significantly contributing to the automation and refinement328

of data curation in biomedical research. These results have a large number of useful329

real-world applications, such as prioritising gene therapy candidates (Murphy et al.,330

2023) and guiding clinical decision-making in rare diseases. It may also be used as331

tool to help inform policy decisions and funding allocation by healthcare or govern-332

mental institutions. This of course would need to be in consultation with subject333

matter medical experts, patients, advocates and biomedical ethicists before reaching334

a final decision. Nevertheless, access to succinct, interpretable, and semi-quantitative335

severity annotations may encourage key decision makers with limited time to review336

individual proposals to pay heed to phenotypes and diseases that would otherwise be337

overlooked. As the HPO and the broader literature continue to grow over time, our338

automated AI-based approach can easily be repeated to keep pace with the rapidly339

evolving biomedical landscape. Furthermore, it can be extended to produce different340

sets of annotations or be used with any other ontology. Additional use cases include341
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gathering data on the prevalence of each phenotype to approximate their social and342

financial costs.343

One key limitation of our study is the fact that we did not explicitly interrogate344

GPT-4 to assess how the availability of treatments affected the annotations it pro-345

duced. For example, there are some very severe conditions for which highly effective346

treatments and early detection screens are widely available (e.g. syphilis, some forms347

of melanoma), thus rendering them fully treatable or even curable provided access348

to modern healthcare. It would therefore be useful to further interrogate GPT-4 to349

uncover how the availability of treatments influences its responses. Many of our find-350

ings here seem to indicate that GPT-4 does take into account quality of care to the351

extent that health services increase the likelihood of desired outcomes. For example,352

many of the cancer phenotypes are justified as always or often causing death unless353

detected and treated early in the disease course. On the other hand, some cancers354

are justified as rarely causing death if appropriate treatment is provided, which may355

not always be the case for individuals or populations with access to less access to356

quality healthcare services. Future efforts could more explicitly ask GPT-4 whether357

the phenotype would cause death with no or suboptimal treatment.358

Another limitation with the present dataset is that phenotypes themselves can mani-359

fest with different degrees of severity, in the sense that they are more pronounced or360

intense. For example, sensitivity to light could range from a mild inconvenience to a361

severe disability that prevents the individual from leaving their home during the day.362

The effect of onset (beyond congenital vs. non-congenital) and time course (acute,363

slowly progression, relapse-remitting) were also not explicitly considered. Finally, we364

did not ask GPT-4 to consider phenotypes as they present within particular diseases.365

For example, while the phenotype ‘Hypertension’ may be mild to moderate in the366

general population and not present until middle-age, it can also present early in367

life as very severe in the context of a rare genetic disorder such as Liddle syndrome.368

Future work could explore these nuances in more detail.369

In addition to these technical challenges, there are multiple factors that need to be370

considered when trying to prioritise phenotypes for their suitability for gene therapy371

development. First, while we have attempted to formalise severity here, this is an372

inherently subjective concept that may vary considerably across different individuals373

and contexts. For instance, one could ask whether a condition that always causes374

death is worse than a condition that causes a lifetime of severe disability (e.g. paral-375

ysis, blindness, intellectual disability). Metrics such as quality-adjusted life years376

(QALYs) have been proposed in the past to address these dilemmas by defining377

health as a function of both the length and quality of life (Prieto & Sacristán, 2003).378

With regards to the financial burden of diseases, in some situations phenotypes379

which require many years of expensive medical care may be prioritised over those380

that result in extremely early onset lethality and little opportunity for therapeutic381

intervention. Another factor that affects the viability of a therapeutic program is382

the speed, cost and other practical considerations of a clinical trial. For instance,383

measuring risk of ageing-related respiratory failure over a ten-year period may be384

impractical in some cases. However, testing for total reversal of an existing severe385

phenotype could potentially yield faster and more immediately impactful results. If386

performed in close collaboration with medical ethicists, governmental organisations,387

advocacy groups and patient families, such cost/benefit assessments could be aided388

by LLMs through the scalable gathering of relevant data. As AI capabilities con-389

tinue to advance, the range of applications in which they can be used effectively will390

continue to grow.391

While our study demonstrates the feasibility and utility of AI-driven phenotypic392

annotation, several limitations must be acknowledged. The reliance on computa-393

tional algorithms may introduce biases or inaccuracies inherent to the training data,394
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necessitating ongoing validation and refinement of our approach. Additionally, our395

severity scoring system, while comprehensive, may not capture the full spectrum of396

phenotypic variability or account for complex gene-environment interactions. Future397

research should focus on further optimising AI-driven annotation methodologies, in-398

corporating additional data modalities such as genomic and clinical data to enhance399

accuracy.400

In conclusion, our study represents a significant step towards harnessing the power401

of AI to advance phenotypic annotation and severity assessment across all rare402

diseases. This resource aims to provide researchers and clinicians with actionable403

insights that can inform rare disease research and improve the lives of individuals404

affected by rare diseases.405

0.5 Methods406

0.5.1 Annotating the HPO using OpenAI GPT-4407

We wrote a Python script to iteratively query GPT-4 via the OpenAI application408

programming interface (API). The ultimately yielded consistently formatted an-409

notations for 17502 terms within the HPO. Our annotation framework was devel-410

oped based on previously defined criteria for classifying disease severity (Lazarin et411

al., 2014). We sought to evaluate whether each phenotype directly caused a given412

severity-related clinical characteristic, including: intellectual disability, death, im-413

paired mobility, physical malformations, blindness, sensory impairments, immunod-414

eficiency, cancer, reduced fertility, and/or had a congenital onset. Through prompt415

engineering we found that the performance of GPT-4 improved when we incorpo-416

rated a scale associated with each clinical characteristic and required a justification417

for each response. We asked how frequently the given phenotype directly causes418

each clinical characteristic - whether it never, rarely, often, or always occurred. This419

design helps to constrain the potential responses of GPT-4 and thus make it more420

amenable to machine-readable post-processing. It also serves to address one of its421

key limitations from the Lazarin et al. (2014) survey, namely the lack information422

on how clinical characteristic frequency affected the clinicians’ severity annotations.423

Here, we can instead use the frequency values to generate more precise annotations424

and downstream severity ranking scores.425

Furthermore, our prompt design revealed that the optimal trade-off between the426

number of phenotypes and performance (in terms of producing the desired annota-427

tions, and adhering to the formatting requirements) was achieved when inputting no428

more than two or three phenotypes per prompt. An example prompt can be seen in429

Figure 1. Thus, only two phenotypes were included per prompt in order to 1) avoid430

exceeding per-query token limits, and 2) prevent the breakdown of GPT-4 perfor-431

mance due to long-form text input, which is presently a known limitation common432

to many LLMs including GPT-4 (Wei et al., 2024).433

0.5.2 Calculating the true positive rate434

Table 1: The HPO branches and their descendants used as true positives for each clinical
characteristic.

Clinical characteristic HPO queries
True positive

HPO IDs
Intellectual disability ‘Intellectual disability’; ‘Mental

deterioration’
19

Impaired mobility ‘Gait disturbance’; ‘Diminished
movement’; ’ mobility’

319

Physical malformations ‘malformation’ 78
Blindness ‘blindness’ 1
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Table 1: The HPO branches and their descendants used as true positives for each clinical
characteristic.

Clinical characteristic HPO queries
True positive

HPO IDs
Sensory impairments ‘Abnormality of vision’;

‘Abnormality of the sense of
smell’; ‘Abnormality of taste
sensation’; ‘Somatic sensory
dysfunction’; ‘Hearing
abnormality’

252

Immunodeficiency ‘Immunodeficiency’; ‘Impaired
antigen-specific response’

29

Cancer ‘Cancer’; ‘malignant’; ‘carcinoma’ 56
Reduced fertility ‘Decreased fertility’;

‘Hypogonadism’
9

A true positive rate was calculated as a measure of the recall of the GPT-4 anno-435

tations. This was achieved by identifying specific branches within the HPO that436

would contain phenotypes that would reliably indicate the occurrence of certain clin-437

ical characteristics, and using all descendants of this HPO branch as true positives.438

For example, all descendants of the terms ‘Intellectual disability’ (HP:0001249) or439

‘Mental deterioration’ (HP:0001268) should be annotated as always or often causing440

intellectual disability (Table 1).441

0.5.3 Quantifying phenotypic severity442

The GPT-4 generated clinical characteristic occurrences were converted into a semi-443

quantitative scoring system, with ‘always’ corresponding to 3, ‘often’ to 2, ‘rarely’444

to 1, and ‘never’ to 0. These scores were then weighted by a severity metric on a445

scale of 1-5, with 5 representing the highest severity, as determined by the provided446

clinical characteristics (Table 2). Subsequently, the weighted scores underwent nor-447

malisation to yield a final quantitative severity score ranging from 0-100, with 100448

signifying the maximum severity score attainable.449

Let us denote:450

• 𝑝 : a phenotype in the HPO.451

• 𝑗 : the identity of a given annotation metric (i.e. clinical characteristic, such452

as ‘intellectual disability’ or ‘congenital onset’).453

• 𝑊𝑗: the assigned weight of metric 𝑗.454

• 𝐹𝑗: the maximum possible value for metric 𝑗 (equivalent across all 𝑗).455

• 𝐹𝑝𝑗 : the numerically encoded value of annotation metric 𝑗 for phenotype 𝑝.456

• 𝑁𝑆𝑆𝑝: the final composite severity score for phenotype 𝑝 after applying nor-457

malisation to align values to a 0-100 scale and ensure equivalent meaning458

regardless of which other phenotypes are being analysed in addition to 𝑝. This459

allows for direct comparability of severity scores across studies with different460

sets of phenotypes.461

462

463

464
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𝑁𝑆𝑆𝑝 =
∑𝑚

𝑗=1 ( 𝐹𝑝𝑗 × 𝑊𝑗 )

∑𝑚
𝑗=1(max{𝐹𝑗} × 𝑊𝑗)

× 100

Normalised Severity Score
for each phenotype

Sum of weighted annotation values
across all metrics

Numerically encoded annotation value
of metric 𝑗 for phenotype 𝑝

Weight for metric 𝑗

Theoretical maximum severity score
465

466

467

Table 2: Weighted scores for each clinical characteristic and GPT-4 response category.

Clinical characteristic Always (3) Often (2) Rarely (1) Never (0)
Death (6) 18 12 6 0
Intellectual disability (5) 15 10 5 0
Impaired mobility (4) 12 8 4 0
Blindness (4) 12 8 4 0
Physical malformations (3) 9 6 3 0
Sensory impairments (3) 9 6 3 0
Immunodeficiency (3) 9 6 3 0
Cancer (3) 9 6 3 0
Reduced fertility (1) 3 2 1 0
Congenital onset (1) 3 2 1 0

0.5.4 Severity classes468

The decision tree algorithm used in Lazarin et al. (2014) was adapted here for use469

with the GPT-4 clinical characteristic annotations. This algorithm first assigned470

each clinical chacteristic to a tier, where Tier 1 indicated the most severe clin-471

ical characteristics and Tier 4 indicated the least severe clinical characteristics472

(‘death’=1, ‘intellectual disability’=1, ‘impaired mobility’=2, ‘physical malforma-473

tions’=2, ‘blindness’=3, ‘sensory impairments’=3, ‘immunodeficiency’=3, ‘cancer’=3,474

‘reduced fertility’=4). If a phenotype often or always caused more than one Tier 1475

clinical characteristic, it was assigned a severity class of “Profound”. If the pheno-476

type often or always caused only one Tier 1 clinical characteristic, it was assigned a477

severity class of “Severe”. A “Severe” class assignment was also assigned if the phe-478

notype often or always caused three or more Tier 2 and Tier3 clinical characteristics.479

If the phenotype often or always caused at least one Tier 2 clinical characteristic,480

it was assigned a severity class of “Moderate”. All remaining phenotypes were was481

assigned a severity class of “Mild”. In cases where the phenotype mapped to more482

than one class, only the most severe class was used. This procedure is implemented483

within the function HPOExplorer::gpt_annot_class.484

0.5.5 Correlations between clinical characteristic severity metrics485

To assess the correlation structure between each clinical characteristic severity met-486

ric, as well as between the composite severity score and each metric, we computed487

Pearson correlation coefficients for all pairwise combinations of these variables using488

the numerically encoded metric values. The correlation matrix was visualised using489

a heatmap, with the colour intensity representing the strength of the correlation490

(Figure 8).491

0.6 Data and code availability statement492

All code and data used in this study are available on GitHub at:493

https://github.com/neurogenomics/gpt_hpo_annotations494
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The GPT-4 clinical characteristic annotations for all HPO phenotypes are made495

available through the R function HPOExplorer::gpt_annot_read or in CSV format496

at:497

https://github.com/neurogenomics/gpt_hpo_annotations/tree/master/data498

A fully reproducible version of this Quarto manuscript can be found at:499

https :// github .com / neurogenomics / gpt _hpo _annotations / blob / master /500

manuscript.qmd501
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axis) indicate more specific phenotypes. The subtitle indicates summary statistics for
the overall relationship between HPO level and the proportion of phenotypes that were
annotated consistently. The p-values above each bar indicate whether the distribution of
consistent/inconsistent annotations, within a given HPO level, significantly deviate from
the expected null distribution.
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Figure 6: Distribution of the composite GPT-4 severity score of the severity scores for all
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–19–



manuscript submitted to medRxiv

impaired
mobility

intellectual
disability

physical
malformations

reduced
fertility

sensory
impairments

blindness cancer congenital
onset death immunodeficiency

0

10

20

30

40

0

10

20

30

40

S
ev

er
ity

 s
co

re

value

always

often

rarely

never

NA
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Table 3: Table of GPT-4 clinical characterstic annotations for all Human Phenotype On-
tology (HPO) phenotypes in Figure 3. For each phenotype, this includes the name of
the phenotype (‘hpo_name’), the ID of the phenotype (‘hpo_id’), the frequency of each
annotation (always, often, rarely, never), and the justification for each annotation (’…_jus-
tification’). These results can also be downloaded programmatically using the R function
HPOExplorer::gpt_annot_check.

Top phenotype annotations table

0.8.2 Supplementary Tables628

Table 4: Severity nnotations generated for GPT-4 clinical characteristic annotations for
the HPO phenotype ‘Fetal akinesia sequence’ (HP:000198).

Clinical
characteristic Annotation Justification
Intellectual
disability

always Fetal akinesia sequence typically results in severe
neurodevelopmental impairment, including
intellectual disability.

Death always Fetal akinesia sequence is typically fatal in utero
or shortly after birth.

Impaired
mobility

always Fetal akinesia sequence results in severe physical
impairment, including impaired mobility.

Physical
malformations

always Fetal akinesia sequence is associated with multiple
physical malformations.

Blindness often Visual impairment is common in surviving
individuals with fetal akinesia sequence due to
neurodevelopmental impairment.

Sensory
impairments

always Fetal akinesia sequence typically results in severe
sensory impairment due to neurodevelopmental
disruption.

Immunodeficiency rarely While not a direct feature, some individuals with
fetal akinesia sequence may have associated
immune abnormalities.

Cancer never Fetal akinesia sequence does not cause cancer.
Reduced fertility often Given the severe physical impairments associated

with fetal akinesia sequence, fertility is likely to be
reduced in surviving individuals.

Congenital onset always Fetal akinesia sequence is a congenital disorder.
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