Contains embeddings/loadings for contributionGene, as well as phenotype metadata.

DEGAS_seurat

Format

An object of class Seurat with 30084 rows and 2138 columns.

Source

DeGAs GitHub

Publication

#### Embeddings/loadings DEGAS_contributionGene <- readRDS("/Desktop/phenome_decomposition/raw_data/DEGAS/contributionGene.rds")#### Metadata DEGAS_metadata <- read.csv("/Desktop/phenome_decomposition/raw_data/DEGAS/metadata_processed.csv", check.names = FALSE) colnames(DEGAS_metadata) <- gsub(" ","_",colnames(DEGAS_metadata)) colnames(DEGAS_metadata) <- gsub("[(]|[)]","",colnames(DEGAS_metadata)) rownames(DEGAS_metadata) <- DEGAS_metadata$label_phe_codeempty_mat <- Matrix::sparseMatrix(i = nrow(DEGAS_contributionGene@feature.loadings), j = nrow(DEGAS_contributionGene@cell.embeddings), dimnames = list(rownames(DEGAS_contributionGene@feature.loadings), rownames(DEGAS_contributionGene@cell.embeddings) ) ) DEGAS_seurat <- Seurat::CreateSeuratObject(counts = empty_mat, assay = "genes", meta.data = DEGAS_metadata) DEGAS_seurat[["contributionGene"]] <- DEGAS_contributionGene usethis::use_data(DEGAS_seurat, overwrite = TRUE)

Details

NOTE: The assay data is intentionally filled with an empty sparse matrix due to size limits.