R/iterate_gsea.R
iterate_gsea.Rd
Iterate gene set enrichment analysis across all traits and celltypes
iterate_gsea( xmat, ymat, correction_method = "BH", qvalue_thresh = 0.05, x_quantiles = 10, y_quantiles = 10, use_quantiles = 10, nCores = 1 )
xmat | gene x trait matrix. |
---|---|
ymat | gene x celltype matrix. |
correction_method | Multiple-testing correction method to be passed to |
qvalue_thresh | q.value threshold to use when report significant results summary. |
x_quantiles | The number of quantiles to bin |
y_quantiles | The number of quantiles to bin |
nCores | Number of cores to use in parallel. Will optimize if |
### DeGAs loadings data("DEGAS_seurat") xmat <- DEGAS_seurat@reductions$contributionGene@feature.loadings xmat <- xmat[, 1:10] # Let's use just 10 components as an example ### Celltype Dataset data("ctd_BlueLake2018_FrontalCortexOnly") ymat <- ctd_BlueLake2018_FrontalCortexOnly[[1]]$specificity res_gsea <- iterate_gsea(xmat = xmat, ymat = ymat)#>#>#> #>