Run sparse Singular Value Decomposition (sparseSVD).

run_sparsesvd(
  mat,
  transpose = TRUE,
  add_names = TRUE,
  rank = 0L,
  tol = 1e-15,
  kappa = 1e-06
)

Arguments

mat

Matrix to run sparseSVD on.

transpose

Whether to transpose the matrix first.

add_names

Add colnames and rownames to embeddings and loadings.

rank

an integer specifying the desired number of singular components, i.e. the rank of the truncated SVD. Specify 0 to return all singular values of magnitude larger than tol (default).

tol

exclude singular values whose magnitude is smaller than tol

kappa

accuracy parameter \(\kappa\) of the SVD algorithm (with SVDLIBC default)

Details

Uses sparsesvd.