Run sparse Singular Value Decomposition (sparseSVD).
run_sparsesvd( mat, transpose = TRUE, add_names = TRUE, rank = 0L, tol = 1e-15, kappa = 1e-06 )
| mat | Matrix to run sparseSVD on. |
|---|---|
| transpose | Whether to transpose the matrix first. |
| add_names | Add colnames and rownames to embeddings and loadings. |
| rank | an integer specifying the desired number of singular components, i.e. the rank of the truncated SVD.
Specify 0 to return all singular values of magnitude larger than |
| tol | exclude singular values whose magnitude is smaller than |
| kappa | accuracy parameter \(\kappa\) of the SVD algorithm (with SVDLIBC default) |
Uses sparsesvd.