Many genes have been associated with diseases Multi-Scale Target Explorer (MSTExplorer
) systematically identifies, prioritises, and visualises cell-type-specific gene therapy targets across the phenome.
Core functionalities include:
1. Conducting phenotype x cell type genetic association tests at scale
The Human Phenotype Ontology (integrated with gene annotations from OMIM / DECIPHER / ORPHANET) is used as the source of phenotype gene signatures. Each gene-phenotype associated is given a continuous score that approximates the current strength of evidence for the association (using data derived from GenCC).
Whole-body scRNA-seq atlases from humans (across multiple developmental stages) are used as a data-driven source of cell type-specific gene markers.
The underlying association tests are designed for both speed and accuracy using memory-efficient data structures, and a highly parallelisable implementation of Generalised Linear Regression (GLM). For example, associations for all pairwise combinations of >11k phenotypes x >200 cell types (>2,200,000 associations) can be in <30 minutes on a Macbook laptop with 10 CPU cores).
2. Inferring multi-scale causal graphs of disease
MSTExplorer
allows users to easily infer and construct multi-scale causal graphs of Diseases (blue nodes) -> Phenotypes (purple nodes) -> Cell types (orange nodes) -> Genes (yellow nodes).
See here for more example networks..
3. Prioritising cell-type-specific gene therapy targets
MSTExplorer
also provides a comprehensive and customisable pipeline that can be run via a single function (prioritise_targets()
) to produce the most promising cell-type-specific gene therapy targets across the phenome.
Within R:
if(!require("BiocManager")) install.packages("BiocManager")
BiocManager::install("neurogenomics/MSTExplorer")
library(MSTExplorer)
If you use MSTExplorer
, please cite:
Kitty B. Murphy, Robert Gordon-Smith, Jai Chapman, Momoko Otani, Brian M. Schilder, Nathan G. Skene (2023) Identification of cell type-specific gene targets underlying thousands of rare diseases and subtraits. medRxiv, https://doi.org/10.1101/2023.02.13.23285820
UK Dementia Research Institute
Department of Brain Sciences
Faculty of Medicine
Imperial College London
GitHub
utils::sessionInfo()
## R version 4.5.1 (2025-06-13)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] rmarkdown_2.29
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6 jsonlite_2.0.0 renv_1.1.5
## [4] dplyr_1.1.4 compiler_4.5.1 BiocManager_1.30.26
## [7] tidyselect_1.2.1 dichromat_2.0-0.1 rvcheck_0.2.1
## [10] scales_1.4.0 yaml_2.3.10 fastmap_1.2.0
## [13] here_1.0.1 ggplot2_3.5.2 R6_2.6.1
## [16] generics_0.1.4 knitr_1.50 yulab.utils_0.2.0
## [19] tibble_3.3.0 desc_1.4.3 dlstats_0.1.7
## [22] rprojroot_2.1.0 pillar_1.11.0 RColorBrewer_1.1-3
## [25] rlang_1.1.6 badger_0.2.5 xfun_0.52
## [28] fs_1.6.6 cli_3.6.5 magrittr_2.0.3
## [31] rworkflows_1.0.6 digest_0.6.37 grid_4.5.1
## [34] lifecycle_1.0.4 vctrs_0.6.5 evaluate_1.0.4
## [37] glue_1.8.0 data.table_1.17.8 farver_2.1.2
## [40] tools_4.5.1 pkgconfig_2.0.3 htmltools_0.5.8.1